Application Sheet

Application *MITSUBISHI CHEMICAL ANALYTECH

1/2

Determination of fluorine in toothpaste

Seat №.: AQF_ME_007E Category :

Instruments: AQF-100

Method: Combustion-ion chromatography

Related standard

It is critically important to know the fluorine content in toothpaste as component analysis for quality control. Concentrations of fluorine, chlorine, bromine, iodine, and sulfur can be determined and accurately by using a combustion ion chromatography (CIC) system combining an Automatic Quick Furnace Model AQF-100 which safely combusts samples with an ion chromatograph.

combuste converted oxide. T converted injecting	e is therred in oxyod to hydrog hese comod to halide into an ion he flow weighing] \Rightarrow	gen (O ₂ gen halid nponents ion and chromat) atmode and are sulfate ograph	osphere. haloger collected ion. The i (IC).	Haloge gas an d into a resultin	ens in t d sulfur absorbin g solutio	he sam turns in g soluti n is anal	iple are to sulfur on and lyzed by
Sample combuste converted oxide. T converted injecting injecting [Sample	e is therred in oxyod to hydrog hese comod to halide into an ion he flow weighing] \Rightarrow	gen (O ₂ gen halid nponents ion and chromat) atmode and are sulfate ograph	osphere. haloger collected ion. The i (IC).	Haloge gas an d into a resultin	ens in t d sulfur absorbin g solutio	he sam turns in g soluti n is anal	iple are to sulfur on and lyzed by
combuste converted oxide. T converted injecting <u>Analyzir</u> [Sample	ed in oxy d to hydrog hese com d to halide into an ion ng flow weighing] ⇒	gen (O ₂ gen halid nponents ion and chromat) atmode and are sulfate ograph	osphere. haloger collected ion. The i (IC).	Haloge gas an d into a resultin	ens in t d sulfur absorbin g solutio	he sam turns in g soluti n is anal	iple are to sulfur on and lyzed by
1.AQF-10	00							<i>y</i> 1
	Sampl Sample A Pyrolysis	dditive : s tube :	WO: Qua	amic san 3 50mg rtz tube	filled with	n quartz	wool	
Hea	•	Outlet:	100 200	00degC 0 ml/min				
	Sampling Absorption Water	olume : g loop : n tube : supply :	20 Fo	or 20 ml				
		1st	2nd	3rd	4th	5th	End	Cool
	_ `			1			360	30
	/			<u> </u>			000	
	GA Ar flow	A Pyrolysic Abs Heater Temp. Gas flood A Sampling Absorption Water ABC-100/ASC-120S Position (mm) Time (sec)	Heater Temp. Inlet: Outlet: Gas flow Ar: O ₂ : GA-100 Absorbent volume: Sampling loop: Absorption tube: Water supply: Ar flow for water supply: ABC-100/ASC-120S	Additive: WO: Pyrolysis tube: Qua Absorbent: 0.1% Mode: Heater Temp. Inlet: 900 Outlet: 100 Gas flow Ar: 200 O2: 400 GA-100 Absorbent volume: Sampling loop: 20 Absorption tube: Fo Water supply: 4 Ar flow for water supply: 150 ABC-100/ASC-120S Position (mm) 0 Time (sec) 0	Additive: WO3 50mg Pyrolysis tube: Quartz tube: Absorbent: 0.1% Hydrog Mode: Heater Temp. Inlet: 900degC Outlet: 1000degC Gas flow Ar: 200 ml/min O2: 400 ml/min GA-100 Absorbent volume: 20 ml Sampling loop: 20 ul Absorption tube: For 20 ml Water supply: 4 Ar flow for water supply: 150 ml/min ABC-100/ASC-120S Position (mm) 0 Time (sec) 0	Additive: WO3 50mg Pyrolysis tube: Quartz tube filled with Absorbent: 0.1% Hydrogen perox Mode: Heater Temp. Inlet: 900degC Outlet: 1000degC Gas flow Ar: 200 ml/min O2: 400 ml/min GA-100 Absorbent volume: 20 ml Sampling loop: 20 ul Absorption tube: For 20 ml Water supply: 4 Ar flow for water supply: 150 ml/min ABC-100/ASC-120S 1st 2nd 3rd 4th Position (mm) 0 Time (sec) 0 Speed (mm/sec)	Additive: WO3 50mg Pyrolysis tube: Quartz tube filled with quartz Absorbent: 0.1% Hydrogen peroxide / wa Mode: Heater Temp. Inlet: 900degC Outlet: 1000degC Gas flow Ar: 200 ml/min O2: 400 ml/min GA-100 Absorbent volume: Sampling loop: 20 ul Absorption tube: For 20 ml Water supply: 4 Ar flow for water supply: 150 ml/min ABC-100/ASC-120S Position (mm) 0 Time (sec) 0 Speed (mm/sec)	Additive: WO3 50mg Pyrolysis tube: Quartz tube filled with quartz wool Absorbent: 0.1% Hydrogen peroxide / water Mode: Heater Temp. Inlet: 900degC Outlet: 1000degC Gas flow Ar: 200 ml/min O2: 400 ml/min GA-100 Absorbent volume: 20 ml Sampling loop: 20 ul Absorption tube: For 20 ml Water supply: 4 Ar flow for water supply: 150 ml/min ABC-100/ASC-120S 1st 2nd 3rd 4th 5th End Position (mm) 0 Time (sec) 0 360

シートNo.: AQF100 2/2

2. lon chromatograph

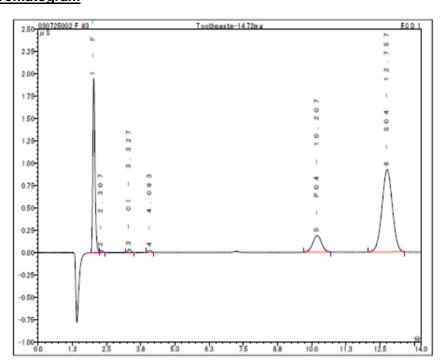
Ion chromatograph : DIONEX DX-320

Column : DIONEX Ion Pack AG12A / Ion Pack AS12A

Eluent : 2.7mM Na₂CO₃ / 0.3mM NaHCO₃

Eluent flow : 1.50ml / min

Detector : Conductivity


Suppressor : AAES(Atlas)

Measuring time : 15min

Sampling loop : 20 ul using GA-100 sampling loop Calibration : F Cl Br S : 5ppm to 40ppm

Results

Chromatogram

Results

Fluoride in sample: Na₂FPO₂

Indicated value (%)	Results (%)			
0.15%	0.142, 0.143			

Remarks

- Handling of reagents: Confirm labels and safety data sheets of reagents and handle them with enough care.
- · Automation is possible by using an Automatic Sample Changer, ASC-120S.
- · When ASC-120S is used, the boat to be used will be a ceramic boat, TX3SCX.
- This application sheet is provided as reference, and does not assure the measurement results. Please consider analysis environment, external factors and sample nature for optimal conditions before the measurement.

AQF100_03_005E