Compuestos orgánicos volátiles en productos de consumo. Aplicación 046 #### **RESUMEN** Los compuestos orgánicos volátiles (VOC) se han determinado en aguas de consumo y productos farmacéuticos. El interés por su determinación ahora se traslada a los alimentos. El sistema de preparación de muestra automatizado Modelo Atomx en conjunción cuin cromatógrafo de gases y detector de masas (GC/MS) permite la determinación de los compuestos VOC en alimentos. El sistema dispone de dos métodos de extracción; la purga directa desde el vial y la extracción automatizada con metanol. ## Introduction In the wake of the recent tragedy in the Gulf of Mexico, many have serious concerns about contamination from petroleum and the chemicals used to clean up the oil spill in the sea food produced from the Gulf of Mexico. In recent studies, the United States Food and Drug Administration (FDA) analyzed the nation's food supply for many chemical classes, such as residues of pesticides, industrial chemicals, metals, nutrients, and Volatile Organic Compounds (VOCs). In the past, the United States Environmental Protection Agency (USEPA) and FDA have analyzed drinking water for VOCs. Now that more people are concerned about contaminants in their food, the FDA has started to look for VOCs in everyday food. For this study, food samples were analyzed for VOC content. VOCs, by definition, are low molecular weight aliphatic and aromatic compounds with low boiling points¹. VOCs can come from solvents, chemical intermediates, and chlorination of drinking water. Some VOCs are allowed as indirect food additives from components of commercial packing. In this study, an Atomx, automated sample prep system with an integrated purge and trap concentrator, was used in conjunction with an Agilent 6890/5973 gas chromatograph-mass spectrometer (GC-MS). Employing a proprietary #9 trap, food samples were evaluated using USEPA method 8260C². Figure 1: Teledyne Tekmar Atomx Automated VOC Sample Prep System and Purge and Trap Concentrator. VOCs in Everyday Food # **Experimental-Instrument Conditions** | GC Parameters | | | | |---------------|---|--|--| | GC: | Agilent 6890 Series GC System | | | | Column | J&W DB-VRX 30m X 0.25mmID X 1.40µmdf | | | | Oven Program: | 35°C for 4 min; 16°C/min to 85°C for 0 min;
30°C /min to 210°C for3 min, 14.29min
runtime | | | | Inlet: | 220°C | | | | Column Flow | 0.9mL/min | | | | Gas: | Helium | | | | Split: | 80:1 | | | | Pressure: | 6.06psi | | | | Inlet: | Split/Split less | | | | MSD Parameters | | | | | |---------------------------|--------------------|--|--|--| | MSD: | Agilent 5973 Mass | | | | | | Selective Detector | | | | | Source: | 230°C | | | | | Quad: | 150°C | | | | | | | | | | | Solvent Delay: | 0.5 min | | | | | Scan Range: | 25-300 m/z | | | | | Scans: | 5.10 | | | | | Threshold: | 400 | | | | | MS Transfer
Line Temp: | 230°C | | | | Tables 1 & 2: GC and MSD Parameters | Atomx Soil Parameters | | | | |-----------------------|------------|------------------------------|---------------------| | Variable | Value | Variable | Value | | Valve oven Temp | 140°C | Purge Time | 11.00 min | | Transfer Line Temp | 140°C | Purge Flow | 40mL/min | | Sample Mount Temp | 90°C | Purge Temp | 20°C | | Water Heater Temp | 90°C | Condensate Purge Temp | 20°C | | Sample Vial Temp | 25°C | Dry Purge Time | 2.00 min | | Prepurge Time | 0.00 min | Dry Purge Flow | 100mL/min | | Prepurge Flow | 0 mL/min | Dry Purge Temp | 20°C | | Preheat Mix Speed | Medium | Methanol Needle Rinse | Off | | Sample Preheat Time | 0.00 min | Methanol Needle Rinse Volume | 3.0mL | | Soil Valve Temp | 100°C | Water Needle Rinse Volume | 7.0mL | | Standby Flow | 10 mL/min | Sweep Needle Time | 0.25 min | | Purge Ready Temp | 40°C | Desorbs Preheat Time | 245°C | | Condensate Ready Temp | 45°C | GC Start Signal | Start of
Desorbs | | Presweep Time | 0.25 min | Desorbs Time | 2.00 min | | Water Volume | 10 mL | Drain Flow | 300 mL/min | | Sweep Water Time | 0.25 min | Desorbs Temp | 250°C | | sweep Water Flow | 100 mL/min | Bake Time | 2.00 min | | Sparge Vessel Heater | Off | Bake Flow | 400 mL/min | |----------------------|------|----------------------|------------| | Sparge Vessel Temp | 20°C | Bake Temp | 280°C | | Purge Mix Speed | Slow | Condensate Bake Temp | 200°C | Table 3: Atomx Soil Method Parameters (Parameters highlighted in yellow were not used.) #### **Calibration** A 50ppm working stock standard was prepared in methanol utilizing six Restek stock standards providing 94 compounds of USEPA Method 8260C. Standard preparation is outlined in Table 4. | Cat# | Name | Concentration | Amount | Vol. | Final
Conc. | |-------|-------------------------------|--------------------|--------|------|----------------| | 30633 | 8260B MegaMix® | 2000μg/mL | 250µL | 10mL | 50 ppm | | 30489 | 8260B Acetate Mix | 2000μg/mL | 250µL | 10mL | 50 ppm | | 30465 | California Oxygenates Mix | 2000 – 10,000µg/mL | 250µL | 10mL | 50 ppm | | 30042 | 502.2 Calibration Mix (Gases) | 2000μg/mL | 250µL | 10mL | 50 ppm | | 30265 | 2-Chloroethyl Vinyl Ether | 2000μg/mL | 250µL | 10mL | 50 ppm | | | VOA Calibration Mix | | | | | | 30006 | (Ketones) | 5000μg/mL | 100µL | 10mL | 50 ppm | Table 4: 50ppm Stock Standard Solution Using the same scheme outlined in USEPA Method 8260C, calibration standards were generated from 2-200ppb by diluting the 50ppm stock standard with distilled water in volumetric flasks. A 25ppm internal standard (IS) was prepared in methanol and transferred to one of the three standard addition vessels on the Atomx. Using the standard addition feature, the Atoms transferred the IS in 5µL aliquots providing a constant 25ppb concentration. Agilent Chemstation software was used to process the calibration data. The relative response factors (RRF) of all target analytes were evaluated for average relative response factor (RRF) and %RSD. The calibration met all USEPA 8260C performance criteria². #### **Sample Preparation** For this study, the sample preparation is straightforward. Foods that required cooking were prepared per package instructions. Foods from fast food restaurants were obtained ready to eat. Once the foods were prepared the samples were chopped and frozen until analysis. Analysis utilized the Atomx soil method with an in-vial purge. 5 mL or 5 grams of sample was placed in a 40mL VOA vial along with a magnetic mixing bar, and then capped and sealed. The Atomx adds 10 mL of reagent water, while an inert purge gas is introduced directly into the sample by a patented 3-stage needle. The purge gas exits the vial along with the extracted compounds of interest onto a sorbent trap. Once all of the analytes have been deposited onto the trap, it is heated and desorbed to the GC/MS system for separation and identification. Illustrations 1 and 2 below show the purge and desorb flow paths respectively. Illustration 1: Purge Flow Diagram Illustration 2: Desorb Flow Diagram #### **Experimental Results** The table-ready foods (Table 5.) analyzed for this study have potentially complex matrixes of sugars, fats and acids which may contaminate other systems. The Atomx utilizes an in-vial purge, minimizing the potential sample matrix effects, while also permitting VOCs to be purged from the food and adsorbed on to the trap. In conjunction with the Atomx, a GC/MS will allow for the compounds to be separated and quantified. Figures 2-5 show the total ion chromatograms (TIC) for some of the table-ready foods that were tested in this application. | Orange (raw) | French Fries | |-------------------------|-------------------| | Red Apple (raw) | Hard Boiled Egg | | Bananas (Baby Food) | Bologna | | Peaches (Baby Food) | Salami | | Green Beans (Baby Food) | Mozzarella Cheese | | Chicken Nuggets | Pouched Tuna | | Cheese Burger | Pouched Salmon | Table 5: Foods Analyzed for VOCs Figure 3: Total Ion Chromatogram (TIC) of VOCs present in a Banana (baby food) sample. Figure 5: Total Ion Chromatogram (TIC) of VOCs present in Tuna sample. **Figures 2-5** clearly demonstrate capability of the Atomx to trap and separate VOC by utilizing an in-vial purge. The VOCs present in the food samples were quantified based on an USEPA Method 8260C calibration curve due to its wide range of compounds. VOC content for the foods listed in **Table 5** ranged from 1-3000ppb. Due to the limited calibration range of 2-200ppb, any concentration outside this range is an estimated value. **Table 6** shows ten of the fourteen prospective food products and their VOC concentrations. Although there is some exposure to VOCs in everyday food, the concentrations are below the maximum contamination limit set forth by the USEPA and the FDA³. Fleming-Jones and Smith state that while having some oral exposure to VOCs from food, they are usually inhaled at higher doses though everyday activity¹. | Salami | | Bologna | | | |---|--|---|---|--| | Compound | Concentration (ppb) | Compound | Concentration | | | 0 1 5: 16:1 | 40.00 | 0 1 5: 16:1 | (ppb) | | | Carbon Disulfide | 19.68 | Carbon Disulfide | 563.43* | | | Acetone | 71.34 | Acetone | 26.93 | | | 2-Butanone (MEK) | 48.59 | Toluene | 0.86* | | | Toluene | 1.59* | p-Isopropyltoluene | 10.28 | | | p-Isopropyltoluene | 3.76 | | | | | | | | | | | Bananas (Baby Food) | | Green Beans (Baby Food) | | | | Compound | Concentration (ppb) | Compound | Concentration (ppb) | | | Acetone | 112.77 | Acetone | 648.39* | | | Ethyl Acetate | 1069.87* | 2-Butanone (MEK) | 36.36 | | | n-Butyl Acetate | 216.24* | Styrene | 3.33 | | | Styrene | 2.48 | | | | | | | | | | | Chees | se Burger | Chicker | Nugget Nugget | | | Compound | Concentration (ppb) | Compound | Concentration | | | | | | (ppb) | | | Acetone | 74.27 | Acetone | 52.19 | | | Chloroform | 1.8 | Chloroform | 2.24 | | | 2-Butanone (MEK) | 6.26 | 2-Butanone (MEK) | 7.68 | | | | | p-Isopropyltoluene | 3.56 | | | | ch Tuna | Pouch Salmon | | | | Compound | Concentration (ppb) | Compound | Concentration (ppb) | | | Carbon Disulfide | 2.99 | Carbon Disulfide | 00.04 | | | | | Carbon Distillide | 38.81 | | | Acetone | 120.27 | Acetone | 38.81
192.77 | | | Acetone
Ethyl Acetate | 120.27
3166.14* | _ | | | | | | Acetone | 192.77 | | | Ethyl Acetate | 3166.14* | Acetone
Ethyl Acetate | 192.77
1483.17* | | | Ethyl Acetate 2-Butanone (MEK) | 3166.14*
196.25 | Acetone Ethyl Acetate 2-Butanone (MEK) | 192.77
1483.17*
107.75 | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene | 3166.14*
196.25
5.27 | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene | 192.77
1483.17*
107.75
4.32 | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene | 3166.14*
196.25
5.27
24.09 | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene | 192.77
1483.17*
107.75
4.32
14.89 | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Rec | 3166.14* 196.25 5.27 24.09 Apple Concentration (ppb) | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Mozzarel Compound | 192.77 1483.17* 107.75 4.32 14.89 Ia Cheese Concentration (ppb) | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Rec Compound Ethyl Acetate | 3166.14* 196.25 5.27 24.09 Apple Concentration (ppb) 1408.95* | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Mozzarel Compound Acetone | 192.77 1483.17* 107.75 4.32 14.89 la Cheese Concentration (ppb) 115.79 | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Rec Compound Ethyl Acetate n-Propyl Acetate | 3166.14* 196.25 5.27 24.09 Apple Concentration (ppb) 1408.95* 38.91 | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Mozzarel Compound Acetone Chloroform | 192.77 1483.17* 107.75 4.32 14.89 la Cheese Concentration (ppb) 115.79 3.42 | | | Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Rec Compound Ethyl Acetate | 3166.14* 196.25 5.27 24.09 Apple Concentration (ppb) 1408.95* | Acetone Ethyl Acetate 2-Butanone (MEK) Isopropyl Acetate Toluene Mozzarel Compound Acetone | 192.77 1483.17* 107.75 4.32 14.89 la Cheese Concentration (ppb) 115.79 | | Table 6: VOC Contaminates Found in Table Ready Food ^{*} Estimated value, the concentration falls outside the calibration range of 2-200ppb # **Conclusions** The Atomx proves to be a valuable tool by meeting the strict precision and accuracy requirements of USEPA method 8260C, while retaining the flexibility of a multi-matrix autosampler. This study utilizes an in-vial purge to extract VOCs from table-ready food. The in-vial purge also allows for sampling of complex matrixes without the risk of contamination from the fats, sugars, and acids inherent in the foods. Keeping the system clean promotes rapid analysis, minimizing downtime for cleaning and repair. Even though USEPA and USFDA have no regulations on VOCs in food, all of the food samples tested below the drinking water limits set forth by both originations. The features of the Atomx Sample Prep System, including direct liquid purging, in-vial purging, and automated methanol extractions, give the ability to test several types of analyses on a single platform. ## **References** - 1. Mary Ellen Fleming-Jones and Robert E. Smith Journal of Agriculture and Food Chemistry 2003, 51, 8120-8127 - 2. USEPA Method 8260C Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) Revision 3, August 2006 - 3. USEPA Drinking Water Contaminants http://water.epa.gov/drink/contaminants/index.cfm